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A model obtained by a seven-mode truncation of the Navier-Stokes equations 
for a two-dimensional incompressible fluid on a torus is studied. This model, 
extending a previously studied five-mode one, exhibits a very rich and varied 
phenomenology including some remarkable properties of hysteresis (i.e., coexis- 
tence of attractors). A stochastic behavior is found for high values of the 
Reynolds number, when no stable fixed points, closed orbits, or toil are present. 
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1. I N T R O D U C T I O N  

In  the line of s tudying simple nonl inear  evolution equations which, al- 
though deterministic, exhibit a stochastic (" turbulent")  behavior  when some 
parameters  go beyond  certain critical values, a model  with interesting 
properties has been proposed in Ref. 1 and  studied in more  detail in Ref. 2. 
Such a model,  consisting of  five first-order ordinary differential equations, 
is obtained by a suitable f ive-mode t runcat ion of the Navie r -S tokes  equa- 
tions for a two-dimensional  incompressible fluid on a toms. The most  
remarkable  features shown by a careful numerical  investigation are the 
following: 

(a) In  a certain interval [rl, r2] of the Reynolds  number  r, the system 
has a stochastic behavior  which, as predicted by Ruelle and Takens in Ref. 
3, appears due to the presence of strange attractors (in our  case two and  
symmetrical ly placed). 
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(b) For r < r 1 the system exhibits two different sequences of infinite 
bifurcations: a closed periodic orbit becomes unstable and a new stable 
one, with a doubled period, arises at every bifurcation. The two sequences 
are found to be strictly related to the generation of the strange attractors at 
r =  r 1. 

(c) The two strange attractors disappear at r = ra, the turbulent behav- 
ior giving place to periodic motion, persistent with r increasing towards 
infinity. The disappearance of each strange attractor occurs because of the 
simultaneous arising of two "twin" orbits, one stable and the other unsta- 
ble. The periodic behavior shown for r > r 2 is in fact due to such a stable 
orbit. 

The features described seem relevant to the understanding of the 
mechanism by which turbulence can develop. They are closely analogous to 
those of the Lorenz model, (4-6) the starting point of recent attempts at a 
mathematical interpretation of turbulence. 

An obvious and quite relevant question about any kind of highly 
truncated models of systems having in reality infinite degrees of freedom is 
how truncation affects the phenomenology exhibited by the model. In this 
work we consider an extension of the model studied in Refs. 1 and 2, 
obtained by truncation of the Navier-Stokes equations to seven modes, two 
new ones having been added to the previous five. Our purpose is to study 
how the phenomenology of the model changes when the number of modes 
in the truncation is slightly increased. By adding two modes only, one could 
hope that the qualitative properties of the five-mode model could persist to 
some extent also in the larger one. This is, however, not the case: in the 
larger model neither is a sequence of infinite bifurcating periodic orbits 
present nor does a stable attracting periodic orbit exist at high values of the 
Reynolds number R. Turbulence is now present at high R and is reached 
through a quite different phenomenology. 3 

Our results are rather analogous to what is found by Curry in Ref. 7, 
where a 14-mode extension of the Lorenz model is studied. In fact, while in 
the Lorenz system the strange attractor arises via a subcritical Hopf 
bifurcation, in the generalized one turbulence is reached when, after a few 
bifurcations starting from a direct Hopf bifurcation, two symmetrically 
placed tori become unstable: Moreover, also in the generalized Lorenz 
model, no sequence of infinite bifurcations is found as well as no stable 
attracting periodic orbit being present at high values of the Rayleigh 
number. 

Even if the seven-mode model studied does not reproduce the interest- 

3 A study is in progress on a system x = F(x, R, e) representing a continuous transition from 
the five-mode model to the seven-mode one as e varies from 0 to 1. 
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ing phenomena of the five-mode one, we think it is also interesting by itself. 
In fact its phenomenology, studied quite in detail, appears so rich and 
varied to amply justify the present work. 

2. THE MODEL 

Consider the incompressible Navier-Stokes equations on the torus 
T 2 = [0,2~r] • [0,2~r]: 

~_uu + (u .  V)u = - Vp + f + pAu 
~t 

div u = 0 

T2U d x  = 0 

where u is the velocity field, t7 is the pressure, and f is a periodic volume 
force. 

We expand u in Fourier series 

k l 
u(x)  = y~ e x p ( i k ' x ) y k  

k~O Ikl 

w h e r e  k = ( h l , h 2 )  is a " w a v e  v e c t o r "  wi th  integer components, k j - =  
(h2, - h a )  and the reality condition Yk = - -~ -k  must hold. Considering the 
analogous expansions for p and f and a finite set L of wave vectors such 
that if k E L also - k  ~ L, we obtain the truncated Navier-Stokes equa- 
tions: 

(k~- .  k ~ ) ( ~  - ~ )  _ _ 

"~k = i ~ 21k',l Ik~l Ikl ' "Yk,'~ - ~'lkl% + / k  kt+k~+k=O 
~,,k2~L (2.1) 

Yk = -- Y--k (k ~ L) 

fk being the component of f with respect to exp(ik,  x)(k• 
In this paper we take L as the set of vectors k 1 = (1, 1), k 2 = (3,0), 

k 3 = (2, - 1), k 4 = (1,2), k 5 = (0, 1), k6 = (1, 0), k 7 ----- ( l ,  - 2 )  and their oppo- 
sites (Fig. 1). Since with this choice of L equations (2.1) also admit 
solutions in which each component Yk, is either real or purely imaginary, we 
can consider the following solution: Yk, = Xl, Yk2 = - - i x 2 '  Yk3 = X3' Yk~ = 

ix4 '  Yk5 = XS' ?k~ = ix6,  Yk7 = ix7'  with real xi 's .  
After suitable changes in time and length scales in order to have ~, = 1 

and to get rid of some factors, and assuming a force f acting only on the 
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mode  k 3, equations (2.1) give 

21 = - 2 x  1 + 4~f5x2x 3 + 4 ~ - x 4 x  5 

2 2 ~ - 9 x  2 + 3~-XlX 3 

2 3 = - - 5 X  3 - -  7~ 'X lX  2 + 9XlX 7 + R 

2 4 = - -  5 X  4 --~rNx1x 5 

2 5 = - - X  5 - -  3 f S x l x  4 + 5 X I X  6 

2 6 = - -  X 6 - -  5 X I X  5 

2 7 = - -  5 X 7  - -  9 X l X  3 

(2.2) 

where R is our  Reynolds  number .  
Since the modes k i, i = l , . . . ,  5, are the ones used for t runcat ion in 

Ref. 1, the system (2.2) is an extension of the f ive-mode model  proposed 

there. In  fact if we let x i = "h /v~ ,  i = 1 . . . . .  5, x 6 -- x 7 = 0, R = r /~ f5 ,  the 
first five equations give the system (2.4) of  Ref. 1. 

We  remark that the system (2.2) has the three following symmetries: 

(~) (XI, X2, X 3, --X4,--X5,--X6,X7)r X3,X4, X5,X6, X7) 
(B) ( - -X . - -X2 ,  X3,--Xg, Xs,--X6,--XT)**(Xl. XvX3'X4, Xs,X6, XT) 
(~) ( - -X. - -XvX3,X4, - -Xs ,X6, - -X7)~(X.X>X3,X4,  Xs,Xr,XT) 

which form a group together with the identity t ransformation.  
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3. FIXED POINTS AND THEIR STABILITY 

The model (2.2) has the following stationary properties: 
(a) For 0 < R < R 1 = (15/2) 1/2 there is only one fixed point Po, with 

components xl = x2 = x4 = x5 = x6 = x7 = 0, x 3 = R/5. It is stable and, 
by numerical evidence, globally attractive. This result is in agreement with 
the general theory on stability of the solutions for the Navier-Stokes 
equations, (8) which predicts such a behavior for R sufficiently small, and 
reproduces the exact behavior of the five-mode model. 

(b) For  R 1 < R < R 2 = _R 1 "~ (3762/25 3 3 ~ ) ~ 3 0 . 2 1 2 4  three fixed 
points are present: the previous one P0, which has become unstable since 
one of the eigenvalues of the Liapunov matrix has crossed the imaginary 
axis at R = R 1, and two more, P+ and P_ ,  bifurcated from P0, with 
components 

Xl--+5~-6(2R-3~) 1/28363~ 

x2=_+5 

x 3 = (3/10)  1/2 

X 4 = X 5 ~ X 6 = 0 

They are stable and attracting: any randomly chosen initial point goes 
either to P+ or to P_ .  At R = R 2 a pair of complex conjugate eigenvalues 
of the Liapunov matrix in P+ crosses the imaginary axis, their real part 
becoming positive, so that we have the following. 

(c) For  R > R 2 all the fixed points of (2.2) are unstable. 

4. PERIODIC AND QUASIPERIODIC SOLUTIONS 

For R 2 ( R  < R12"~248.2 the model exhibits a rather complicated 
behavior, with several periodic and quasiperiodic solutions, often present at 
the same time and for rather large ranges of the parameter. For a clear 
exposition of all the phenomenology, it appears natural to present it divided 
into four parts, each of them related to one of the four different periodic 
orbits which we have found. 
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4.1. Orbits ~, TORI T(~) 

At R = R2, from the points P+ and P_,  two symmetric orbits ~+ and 
d~_ (Fig. 2) arise via a direct Hopf bifurcation, each one invariant under the 
symmetry (a) and transformed in the other one by (/3) or (y). It is easy to 
verify that, as predicted by the Hopf theorem (see, for example, Ref. 3), the 
period of such orbits tends to T =  (2~r/]'to])~ 1.167 for R ~ R  2 from 
above, Y0 being the imaginary part of the two eigenvalues crossing the 
imaginary axis. The orbits t~ remain stable and attracting up to R---R4 

71.30, becoming unstable because a pair of complex conjugate eigenval- 
ues of the Liapunov matrix for the Poincar6 map crosses the unit circle. 
Again numerical evidence shows agreement with the predictions of the 
bifurcation theory(3) : two  attracting tori T(~+ ) and T(~_ ) arise from the 
two orbits ~+ and ~_. 

Figure 3 provides a plane projection of the motion of a randomly 
chosen initial point on a torus T(A) for two values of the parameter, 
R = 71.40 and R = 72. Two facts appear evident looking at the figures: (i) 
each torus T(6g) rapidly grows as R increases; (ii) every point which goes 
over a torus T(~) describes trajectories which seem to possess all the 
characteristics of the ones of a quasiperiodic motion. These facts can be 
further supported studying the behavior of the flow in a neighborhood of 
an orbit d~, a little later than it has become unstable. In order to make such 
a study we have defined a Poincar6 map  considering a hyperplane II 
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normal to @ at a conveniently chosen point P, and then observing the 
intersections of the solution curve with a suitable portion o of 1I containing 
P. Figure 4 provides the projection of o in the plane (x2, x3) for R = 71.40, 
R = 71.80, and R = 72.10, showing the intersections of the flow with our 
codimension-1 section. Such figure gives very strong evidence that in R 4 a 

direct bifurcation to a torus has taken place, clearly confirming our 
previous statements. 

For R > R 5 "-~ 72.11 the two tori T(@) do not attract any more. Every 
point, randomly chosen in a neighborhood of an orbit @, stays there for a 
short time only and afterwards goes rapidly to one of the two stable orbits 
o~ (see below). 

4.2. ORBITS ~ ,  TORI T(~) 

For 63.30~ R 3 < R < R10 "-~ 192.75 two symmetric orbits ~1 and ~2 
(Fig. 5), stable and attracting, are present, each one invariant under the 
symmetry (f l)  and changed in the other by ((x) or (~/). The study of the 
stability properties of these two orbits shows that they lose stability both in 
R 3 and R10 because a pair of complex conjugate eigenvalues crosses the 
unit circle. Let us consider first the bifurcation in R10. As in R 4 for the 
orbits @, we have strong numerical evidence of a bifurcation to an invariant 
attracting torus. Each orbit ~ gives rise to a torus T(~),  growing as R 
increases and attracting up to R = Rll--227.1.  Any randomly chosen 
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Fig. 5. Projections of a stable orbit ~ for R = 190. 



A Seven-Mode Truncation 407 

C3 

CD 

(/3 

f"d 

CO 

C'd 

I 

fX3 
p 

0 0  

f O  
X 

- 6  ~ - 4  . - ~  ~ (] * 2 * 4 . ~ o 

Fig. 6. Projections of the flow on a torus T ( ~ )  for R = 196. 

initial point, which is attracted by a torus T ( ~ ) ,  describes on it qua- 
siperiodic trajectories, in the same way as we have seen for the two tori 
T(~).  Figure 6 shows, for R = 196, a (x 1, x3) projection of a point moving 
on a torus T ( ~  ): the solution curve appears to fill completely the torus. An  
analogous inference can be made looking at Fig. 7, showing for three 
different values of R a Poincar6 map defined on the hyperplane x 3 = 0. For 
R > R1] each torus T ( ~ )  does not attract any more, and any initial point, 
even if close to an orbit 9 ,  tends to a stable orbit C (see below). 
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Consider now the bifurcation in R 3. Numerical  computations show 
that such a bifurcation, unlike the one described above, is not a direct 
bifurcation to a torus T 2. In fact no attracting torus is present for R < R3: 
for any initial point, arbitrarily .close to an orbit ~ ,  now unstable, the 
solution, after staying a long time in the neighborhood of ~ ,  goes either to 
~+ or d~.  It  can then be reasonably hypothesized that in R 3 an inverted 
bifurcation to a torus T 2 takes place and that, for each orbit ~ ,  an unstable 
torus exists, which shrinks to the orbit for R approaching R 3 from above. 



A Seven-Mode Truncation 409 

We have followed the orbits B for R < R 3 and R > R10, when they 
have become unstable. While for R decreasing the orbits soon become so 
unstable that it is impossible to follow them further on, for R increasing 
they have been followed much longer, up to R = 800. 

4.3. ORBITS C 

For  141.7 --~ R 6 ( R ( R12 "-" 248.2 two extra symmetric orbits C1 and 
C 2 (Fig. 8) are present, stable and attracting, each one invariant under the 
symmetry (3') and transformed in the other one by (a) or (fl) .  The 
computation of the eigenvalues for the Poincar6 map shows that one of 
them tends to cross the unit circle at + 1 for R increasing towards R12. It 
has been verified that the two orbits are not present any more for R > R12 
and that each one of them appears at R = R~2 together with an hyperbolic 
(unstable) one, in agreement with the bifurcation theory. 

Looking at the stability properties of E~ and C 2 for R decreasing, it has 
been found that they lose stability in R6, when a pair of complex conjugate 
eigenvalues crosses the unit circle. It is easy to verify that, for R slightly 
smaller than R 6 and for any initial point arbitrarily close to an orbit C, the 
solution goes to an orbit a~, stable and attracting for this value of the 
parameter. As at R = R 3 for the orbits ~ ,  one can reasonably make the 
hypothesis of an inverted bifurcation to a torus T ;,  even if numerical 
evidence for it cannot be given. 

4.4. ORBITS | 

For 146.61 ~ R  s < R < g9~---166.59 two symmetric orbits | and 6~ 2 

(Fig. 9) are present, stable and attracting, each one invariant under the 
symmetry (a) and changed in the other one by (f l )  or (y). The stability 
analysis of these orbits shows that both in R s and R 9 they become unstable 
because an eigenvalue of the Poincar6 map leaves the unit circle through 
+ 1. In such a case the bifurcation theory (9) predicts that in generic 
conditions an orbit loses stability either exchanging it with another orbit 
present at the same time or, in presence of a symmetry, bifurcating to two 
new stable periodic orbits with breaking of the symmetry. However, neither 
of these is our case: all the many and careful numerical attempts looking 
for such an orbit at R 8 and R 9 w e r e  unsuccessful. 

Following an orbit @, already unstable, for R decreasing, we were able 
to observe an interesting phenomenon: it disappears at R = R 7 ~--- 142.97 
collapsing with another orbit "twice" unstable. In other words each orbit | 
arises at R = R 7 already unstable, i.e., with an eigenvalue of the Liapunov 
matrix real and greater than + 1. 

As an attempt to interpret the bifurcations in RT, Rs, and R9, we think 
that the following hypothesis could be made: each orbit arises, at the same 
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t ime with an hyperbol ic  one,  on s o m e  invariant manifo ld  which is unstable 
for R = R 7. As a consequence ,  the orbit is stable with respect  to the 
manifo ld  but unstable with respect to the full space. At  R = R 8 that 
manifold,  which might  poss ibly  be even a torus, b e c o m e s  stable and 
attracting and with it also the orbit |  H o w e v e r  the manifold,  even if n o w  
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stable, is still "undetectable" because any numerical investigation shows 
only the orbit. At R = R 9 the manifold becomes unstable again and with it 
the orbit | 

5. TURBULENCE 

Consider now the behavior of system (2.2) for R > R12, after each 
orbit C has disappeared collapsing with a hyperbolic one. No simple 
attractor is present: the three fixed points of (2.2) are unstable for quite a 
while; among all the closed orbits and toil previously described, trace is 
found of the unstable orbits ~1 and ~2 only. 

By studying the flow of a randomly chosen initial point, trajectories 
are observed which all appear completely chaotic and sensitively dependent 
on initial conditions. For R not much greater than R~2, it is possible to 
observe that a significant role is still played by the unstable orbits ~ .  This 
appears clear if we look at Fig. 10a, showing a (x4,xs) projection of the 
flow of a random point for R = 250, and we compare it with Fig. 10b, 
showing for the same value of R the same projection of ~1 and ~2. 
Evidently the flow tends to become localized first in a neighborhood of an 
orbit ~ ,  to spend some time there, and then to be pushed away to the 
neighborhood of the symmetric orbit ~ .  The entire process repeats itself 
indefinitely. This situation appears analogous to that found by Curry in 
Ref. 7, where the flow in the turbulent parameter range is driven by a 
similar mechanism, with two unstable toil replacing the two orbits ~ .  
When R increases, the behavior of our system becomes more complicated 
(Fig. 11),, appearing less influenced by the orbits ~ ,  as they get more and 
more unstable. 

Since all the numerical investigations carried on up to R = 5000 keep 
showing a stochastic behavior, we think that turbulence might also persist 
for R tending to infinity and no stable attracting periodic orbit exists at the 
high values of the Reynolds number. 

6. C O N C L U S I O N S  

In this work we have reported the results of our numerical investiga- 
tion on a model of seven nonlinear ordinary differential equations. Such a 
model, obtained by a suitable seven-mode truncation of the Navier-Stokes 
equations for an incompressible fluid on a torus T 2, exhibits a very varied 
phenomenology, with an interesting sequence of bifurcations. Figure 12 
shows a table which graphically summarizes the full behavior. It is straight- 
forward to observe that four different and independent stories describe the 
complete phenomenology of the model. The first story consists of a 
sequence of bifurcations very similar to the one found by Curry in Ref. 7: 
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the fixed point Po bifurcates to the two fixed points P+ and P_;  via a 
direct Hopf bifurcation P§ and P bifurcate to the periodic orbits ~+ and 
~_, which on their turn bifurcate to the tori T(~+ ) and T(~_ ). The further 
three stories, connected, respectively, to the existence of the orbits ~ ,  C, 
and | show three interesting examples of "life" of an orbit, each one with 
its own characteristics. 

A remark which is also straightforward from the table in Fig. 11 
concerns a strong phenomenon of hysteresis (i.e., coexistence of stable 
attractors) characterizing the model. In the interval (Rs,R9) are present 
even three' different stable orbits; in the intervals (R4,Rs) and (RlO,RII) 
hysteresis takes place between closed orbits and tori. 

For all the values of the Reynolds number larger than Rt2, when no 
stable periodic orbits or tori are present any more, the model exhibits a 
turbulent behavior. In fact any randomly chosen point describes trajecto- 
ries which appear to be completely random and sensitively dependent on 
initial conditions. 
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As already observed in the Introduction, our seven-mode system does 
not reproduce the qualitative features of the five-mode model from which it 
has been obtained as an extension. This result makes more striking what 
appears already in Ref. 7, where a 14-mode generalization of the three- 
mode Lorenz system is presented: new modes can change quite completely 
the phenomenology of a model. At this point various questions arise 
naturally. Is it possible to explain how such a change happens? Is it a 
general property of truncated models or for large truncations is it possible 
to have a persistence in the qualitative phenomenology by addition of new 
modes? If the latter is the case is it reasonable to hope this will happen at a 
number of modes for which the model is still numerically analyzable? It is 
evident that for any attempt to answer these questions many more numeri- 
cal investigations are still necessary, and perhaps not sufficient. 
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